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ABSTRACT 

This paper focuses on machine learning, where an agent learns how to solve a specific 

problem. The learning process will take place in a simulated environment, so the 

effectiveness can be measured without any potential damage to real the robot. Q-

Learning is a temporal-difference learning method, that maps the effectiveness of an 

action in a given situation. Our learning agents use this method to solve a simple “catch 

and escape” scenario in a 2D world. 
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1.  Introduction 

Our modern, scientifically advanced world is 

heavily based on robotics. At first, robots were 

introduced to the assembly line to execute specific 

tasks over and over again. Due to their versatility, we 

are using robots everywhere, especially in 

environments that are too dangerous for humans. 

Typical applications for these industrial robots 

include painting, assembly, welding, packing, testing. 

In the last two decades, robotics has taken a 

step further with the extra intelligence added: the 

robots are capable off decision making in certain 

situations. The modern robot tends to mimic the 

behavior of humans or animals. The authors of [6] 

have created robot that learns to act as a pet dog. 

Other  project focus on insect, or spider like behavior, 

see [2] for details.  Thus, the term “intelligent 

robotics” is used. Even competitions like RoboCup 

where created to test these robots. 

The ultimate goal is to achieve a fully 

autonomous, intelligent, mobile robot that can solve 

problems in real the world. Just to name a few areas: 

outer space exploration, mining, deep sea 

constructions, disaster areas, or places to small for 

humans, or canines to fit in etc. Also there are 

everyday issues that can be done by intelligent robots: 

imagine a robot that cleans the house while you are 

away.  

The use of reinforcement learning (RL) 

algorithms in solving everyday problems is a 

relatively new approach. In theoretical problems, such 

as Maze World, or Cliff World [3], these algorithms 

perform well, great results can be achieved. However, 

in real life the problems are dynamic, usually in a 

noisy environment, therefore we wish to create our 

own theoretical world and test reinforcement learning 

methods here. 

Our goal is to implement a “catch and  escape“ 

scenario, in which our trained agent will try to locate 

and catch the escapee in a 2D terrain that has 

obstacles in it. To accomplish this we will use a RL 

algorithm, Q-learning, that will guide the agent 

through an unfamiliar terrain and to the target.  

 

2.  Reinforcement Learning (RL) 

A reinforcement learning agent learns the 

impact of a certain action that it preforms in a given 

environment, thus the environment is providing the 

feedback. Unlike in many other machine learning 

algorithms, here “the learning agent is not told which 

to take, it has to discover, by trial and error”, which 

action gives the most reward.  

Richard S. Sutton and Andrew G. Barto, see 

[3], note that: “These two characteristics--trial-and-

error search and delayed reward--are the two most 

important distinguishing features of reinforcement 

learning”. Temporal-difference methods (TD) 

“require no model and are fully incremental, but are 
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more complex to analyze”. TDs are a combination of 

DP and Monte Carlo methods. TD methods learn 

directly from raw experience without a model of the 

environment's dynamics, and “they bootstrap”: 

“update estimates based on previous estimates”. 

Q-learning is an off-policy reinforcement 

learning algorithm created by Watkins in 1989, see 

[5]. Q-learning is a member of the Tds methods 

family. The algorithm learns an “action-utility 

representation instead of learning utilities”. The Q 

function calculates the “Quality of a state-action 

combination” [4]. If S is a set of states and A a set of 

actions, then the simplest form, called “one-step Q-

learning” [3], is: 

 
Q(st , at )←Q(st , a t)

+ α [r
t+ 1

+ γmax
a

Q(s
t+ 1

, a)− Q(s
t
, a

t
)]

  (1) 
 

Where Q(s,a), denotes the value of taking 

action  a in state s. Often a two dimensional table is 

used, the Q table, to store the data. The main 

parameters are:  

 α – learning  rate: meaning how much of 

the new information will override the old 

information. A factor of 0 means that the 

agent will not learn, while a factor of 1 

means that our agent considers only the 

most recent information  

 γ – discount factor :is used to weight the 

rewards: The closer to 1 the greater the 

weight of future rewards. A factor of 0 will 

make the agent “opportunistic”, giving 

much more interest to current rewards. 

 

The Q-learning method, and TD methods in 

general do not specify what actions should the agent 

take in each step. The agent can take any action, from 

a list of possible actions.  This means that the agent at 

each step can chose an action that is either 

exploratory or the best know until this point. The ε-

greedy method specifies this: the closer ε is to 0, the 

agent will take the best action, whereas if ε → 1 the 

agent will simply explore the state, meaning that it 

will take a random possible action.  

In our learning scenarios, the agent uses the  

algorithm which is presented by the authors of [3].  

This algorithm can be seen on fig 1. 

At the beginning of the training the γ  is set to 

a high value thus forcing the agent to explore. After a 

while we can lower this value and choose exploitation 

instead.  

One of the greatest advantages of the Q-

learning algorithm is its simplicity. Th major 

drawback of the algorithm is the finite number of 

states and actions – in the real world this is not 

always possible. If the number of states, or actions 

increases the Q-table gets big, resulting in a poor  

performance. The problem can be solved by using 

discrete the inputs. 

Another disadvantage is the local maximum 

problem – selecting the best rated action can take the 

agent in a local maximum. 

 

3.  Proposed framework 

A simulated world filters many noises that are 

common in the real world. For example, in the real 

world the ground might be slippery in some parts, a 

robot's wheel might slip, thus causing false inputs. 

Also, in the real world collisions can have bad 

consequences, like partially destroying the robot. In 

the simulator collisions are only theoretical.  

Q-learning is a “simple” algorithm, defined by 

a few key inputs and outputs. States are the way of 

defining how the agent “interprets current state of the 

environment”. In every given state the agent can 

choose from a series of actions. These Actions are: 

move (forward), rotate right, rotate left. After 

executing the selected action, a reward is given.  A 

Reward representing the amount theoretical bonus for 

reaching that state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen on fig. 2, the agent, shown here in 

green, searches for the target, here in red. The agent 

has only local knowledge this information is gathered 

from sensors. To simulate this we added a “visibility 

circle” around the agent, shown here in yellow.  

Fig. 2 – Simulation 

Fig. 1: Q-learning Algorithm 
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Working with only local knowledge means that fewer 

information needs to be processed. 

Because we are not focusing on gathering and 

processing sensor information, everything inside this 

circle in considered known to the agent. We tried to 

make this visibility as realistic as possible: the agent 

can not see through objects. An object can be either 

the target, an unmovable obstacle (dark gray), or a 

wall (no color). 

 

4.  Environment without obstacles 

At the first approach we put our agent in an 

environment that had no obstacles. Catching a target 

in an unknown environment, requires the following 

steps: wander around  until  target is visible, rotate the 

direction marker towards the target, move forward, 

see fig. 2 for details.  

Every state is composed of two descriptors: 

distance and angle.  The distance: the euclidean 

distance between the targets and robots center in 

sorted in a few distance categories: “category0” 

means that the target is right near the agent. 

The angle is always between [0, 360), no 

negative values are allowed. In our case an angle of 

just 1° is not significant. This means that we use 

angle categories instead: “category0”  points directly 

in front of the robot and represents any angle from 

[+5°, -5°]. Angle categories are visible on the fig. 3, 

because having to much lines will make confusion, 

they are not displayed. The authors of [2] and [6] also 

use discrete inputs since they are also working with 

continuous values.   

 

5. Environment with obstacles 

The current state descriptors do not provide a 

way handle obstacles because they only contain 

information about the target. Unfortunately, almost 

every real environment has some sort of obstacles. In 

our simulated world we added only stationary 

obstacles, meaning that they do not change their 

position in time.  

Catching the target still requires the previously 

mentioned steps, but when an obstacle blocks the path 

to the target the agent needs to figure out how to 

avoid a collision. A basic solution to an obstacle 

would be to use a modified BUG1 algorithm where 

the agent simply moves along the contour of obstacle 

until it is no longer blocking the path to the target. 

See [1] for details on Bug1. 

To do this the agent needs to store the 

obstacles relative position to its own. The agent is 

equipped with bumper sensors that inform the 

algorithm about the objects which lies directly in 

front of the agent. These bumpers are not visible by 

default, but the can be seen on fig. 4. 

 

 

The state is described similarly as in the 

previous case, but with three additional sensors. 

These are: left, front, right bumper. A bumper holds 

extra information: what lies there, and how far is it. 

On fig. 3 the left bumper sees the target, the front 

bumper has nothing,  and the right bumper points to 

the wall. The agent needs three bumpers because it 

must know were the obstacle is located. If the “left 

bumper” is showing that we are about to hit an 

obstacle, we can enforce the agent to take the 

appropriate action, in this case “rotate right”. 

If the target is currently not visible the agent's 

main task is to avoid obstacles. Otherwise follow the 

target and avoid obstacles if necessary. 

  
6. Experimental results 

For testing we used the following algorithm: 

1. Generate a new target 

2. Start the agent → wandering process 

3. Check if the target is reached -  in other 

words the target in front of the agent with 

minimum distance between them.  

4. If true go to 1.  

5. Otherwise go to 2.  

  
We repeat this process until the agent learns 

the problem. We consider the learning process 

successful when our agent upon seeing the target 

starts moving directly towards it successfully 

avoiding any obstacles. 

We repeat this process for five times and 

calculate the average learning runs. This will give us 

information about how fast the learns in a given test 

Fig. 3 – Angle categories 

Fig. 4 – Bumper sensors 
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scenario. These scenarios are created based on the 

rewarding method.  

 

6.1 Agent, no obstacles  

Choosing the wright reward set is a very 

difficult process. First we experimented with 

rewarding only when the target is reached. This 

approach proved not to be a successful one: it needs a 

large amount of trials to finally move towards the 

target. The average here was 1648 runs.  

Rather than giving a “big reward” for reaching 

the target, we introduced a new concept: sub goals. If 

the agent is “getting closer to the target” give a 

positive reward, otherwise negative. This is calculated 

based on the current angle and distance categories and 

the previous  angle and distance categories. If the 

distance and the angle is getting smaller, then the 

reward increases. We used a higher value for angle 

because it is more important to turn towards the target 

and then to start moving forward. 

To further enhance the algorithm, we added 

'Losing Target' reward which means that if the agent 

loses the target it will get a big negative reward. This 

produced almost the same result, but with half of time 

need to learn the task. Also we experimented with 

other sub goals like: “is the distance getting 

smaller?”, giving a small but positive reinforcement 

to the agent. Similarly, we applied this to the angle 

input as well. In test case #3 the agent learns the 

problem in approximately 300 successful learning 

iterations.  

Table 1: No obstacles - summary 

# Avg Rewarding 

1 164

8 

Reach the Target →  +100  

2 972 Added 'Losing Target' rewards:  

current distance>older distance → -100 

3 308 Added 'Sub Goals' rewards: 

Angle: “from good to worse” → -3 

Angle: “from bad, improvement” → +2 

Distance: “from good to worse” → -2 

Distance: “from bad, improvement” → 

+1 

 
6.2 Agent and obstacles 

As described earlier this agent is equipped 

with more sensors (bumpers) that serve as inputs for 

the agent. The drawback of adding more state 

descriptors is that the learning will take longer, but 

the obvious advantage is that “the agent knows more 

information about the environment”.    

The same testing scheme presented earlier is 

applied here to after all this agent is an upgraded 

version of the previous one, meaning that the reward 

rules still apply here as well.  Only difference is that 

once the bumpers sense that the agent is about to hit 

some object (other than the target), they will force the 

agent to turn away first. They also help to solve a 

very interesting problem: the local maximum, shown 

on fig. 5. The problem here is that if the agent 

chooses the “left” action it will hit the obstacle. 

Choosing the “right” action turns away from the 

target. 

Here, the algorithm is overriding the just for 

brief moment the goal of reaching the target, with 

avoiding collisions. In this case the reward is greater 

than 100 (the reward normally given for reaching the 

target). We also experimented with a smaller reward, 

90, but in this case the results were worse then before. 

 

 

This agent works the same as the previous one 

in an environment containing no obstacles. However, 

when these exist evasive action is taken. First we 

experimented with “not forward” reward: meaning 

that if an obstacle is blocking the path force a rotating 

action. This setup does not hit any obstacle but it 

might take the wrong angle (ex. on fig. 5 rotate left all 

the way). The success rate is low, in many case the 

agent fails to learn the problem.  

Then we introduced the “good angle reward”. 

If  the right bumper is activated and the other is not, 

the agent turns the other way. Same applies in the 

other case.  

This setup sometimes gets caught in an infinite 

loop due to the learning process. Look at the situation 

presented in fig. 5. The agent chooses the correct 

action (rotate right), however after executing this 

action, it immediately chooses the opposite action 

(rotate left) which takes us back to the initial 

problem.  

To solve this in test case #3 check the previous 

action as well. The rewarding is the same as in test 

case #2 but the algorithm also checks the previous 

action thus avoiding the infinite loop.  

 

Table 2: With obstacles - summary 

# Avg. Rewarding 

1 14821 Added “Not forward” → +10 

2 5138 Added “Good angle” → +110 

3 2387 Added “previous action check” 

 
 

Fig. 5 – Local maximum 
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7. Conclusions  

The Q-learning algorithm can be applied even 

in a dynamic environment. Selecting the proper state 

space can be difficult even at such a simple task. Also 

the research shows how the rewards affect the 

learning. 

We store the data in a multidimensional table, 

the Q table. The dimensionality of Q is given by 

multiplying the state descriptors: #angle x 

#dimensions... x #actions. In the current the Q table 

there are unused areas. If the target is not visible, then 

the angle and distance do variables do not count, they 

are set to predefined number. Although not used 

theoretically, it occupies space in the memory.  One 

way to fix this issue is to create a list of states, and 

every time the agent finds a new undocumented state, 

it simply adds it to the back of the list. We 

experimented with this as well. Problem here is a new 

state found only in the testing phase (does not have a 

Q value). The agent can take a potentially bad move.  

The main benefit of using discrete input values 

is that less categories are manageable. This way we 

only handle significant changes, that clearly have an 

impact, but if we do not select a proper sampling, we 

might be loosing on these details. 

Another potential problem might be the usage 

of ε-greedy algorithm. This approach allows the agent 

to select between exploration and exploitation. In case 

of exploitation, what happens if we have multiple best 

actions? The answer is that always the first, or last 

action will be selected. Using a soft-max algorithm 

[3], this problem can be solved.  The soft-max 

algorithm distributes more equally among all actions 

that give the same reward. The soft-max algorithm 

provide a better distribution among equal Q valued 

actions. The main problem here is that the agent 

always chooses the first (or last depending on the 

search implementation) best value, We did not 

include this algorithm but in the near future we wish 

to do so.  For more details see [2].  

 

8. Future 

In the near future, we wish to further extend 

this research, implementing a system in which many 

agents compete against one another, or perhaps 

working together to achieve a common goal. 
Another idea is to change the state descriptors 

completely. This new approach is illustrated on fig. 6. 

The agent here is equipped with sensors that go all 

around. Each sensor marks how desirable that point 

is: red attracts, blue repels and white means that there 

is nothing there.  

This new method is called potential field 

navigation. Currently this development is in testing 

phase.  
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