

28

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş

Vol. 9 (XXVI) no. 1, 2012, ISSN 2285 – 438X (Online), ISSN–L 1841 – 9267

ROBOT CONTROL USING Q-LEARNING

SZÁNTÓ Zoltán

Department of Industrial Engineering and Management

Faculty of Engineering

 „Petru Maior“ University of Tîrgu Mureş, Romania

Nicolae Iorga Street, no. 1, 540088, Mureş County

szanto_z_zoltan@yahoo.com

ABSTRACT

This paper focuses on machine learning, where an agent learns how to solve a specific

problem. The learning process will take place in a simulated environment, so the

effectiveness can be measured without any potential damage to real the robot. Q-

Learning is a temporal-difference learning method, that maps the effectiveness of an

action in a given situation. Our learning agents use this method to solve a simple “catch

and escape” scenario in a 2D world.

Keywords: robot control, q-learning, reinforcement learning, simulation, ε-greedy algorithm

1. Introduction

Our modern, scientifically advanced world is

heavily based on robotics. At first, robots were

introduced to the assembly line to execute specific

tasks over and over again. Due to their versatility, we

are using robots everywhere, especially in

environments that are too dangerous for humans.

Typical applications for these industrial robots

include painting, assembly, welding, packing, testing.

In the last two decades, robotics has taken a

step further with the extra intelligence added: the

robots are capable off decision making in certain

situations. The modern robot tends to mimic the

behavior of humans or animals. The authors of [6]

have created robot that learns to act as a pet dog.

Other project focus on insect, or spider like behavior,

see [2] for details. Thus, the term “intelligent

robotics” is used. Even competitions like RoboCup

where created to test these robots.

The ultimate goal is to achieve a fully

autonomous, intelligent, mobile robot that can solve

problems in real the world. Just to name a few areas:

outer space exploration, mining, deep sea

constructions, disaster areas, or places to small for

humans, or canines to fit in etc. Also there are

everyday issues that can be done by intelligent robots:

imagine a robot that cleans the house while you are

away.

The use of reinforcement learning (RL)

algorithms in solving everyday problems is a

relatively new approach. In theoretical problems, such

as Maze World, or Cliff World [3], these algorithms

perform well, great results can be achieved. However,

in real life the problems are dynamic, usually in a

noisy environment, therefore we wish to create our

own theoretical world and test reinforcement learning

methods here.

Our goal is to implement a “catch and escape“

scenario, in which our trained agent will try to locate

and catch the escapee in a 2D terrain that has

obstacles in it. To accomplish this we will use a RL

algorithm, Q-learning, that will guide the agent

through an unfamiliar terrain and to the target.

2. Reinforcement Learning (RL)

A reinforcement learning agent learns the

impact of a certain action that it preforms in a given

environment, thus the environment is providing the

feedback. Unlike in many other machine learning

algorithms, here “the learning agent is not told which

to take, it has to discover, by trial and error”, which

action gives the most reward.

Richard S. Sutton and Andrew G. Barto, see

[3], note that: “These two characteristics--trial-and-

error search and delayed reward--are the two most

important distinguishing features of reinforcement

learning”. Temporal-difference methods (TD)

“require no model and are fully incremental, but are

29

more complex to analyze”. TDs are a combination of

DP and Monte Carlo methods. TD methods learn

directly from raw experience without a model of the

environment's dynamics, and “they bootstrap”:

“update estimates based on previous estimates”.

Q-learning is an off-policy reinforcement

learning algorithm created by Watkins in 1989, see

[5]. Q-learning is a member of the Tds methods

family. The algorithm learns an “action-utility

representation instead of learning utilities”. The Q

function calculates the “Quality of a state-action

combination” [4]. If S is a set of states and A a set of

actions, then the simplest form, called “one-step Q-

learning” [3], is:

Q(st , at)←Q(st , a t)

+ α [r
t+ 1

+ γmax
a

Q(s
t+ 1

, a)− Q(s
t
, a

t
)]

 (1)

Where Q(s,a), denotes the value of taking

action a in state s. Often a two dimensional table is

used, the Q table, to store the data. The main

parameters are:

 α – learning rate: meaning how much of

the new information will override the old

information. A factor of 0 means that the

agent will not learn, while a factor of 1

means that our agent considers only the

most recent information

 γ – discount factor :is used to weight the

rewards: The closer to 1 the greater the

weight of future rewards. A factor of 0 will

make the agent “opportunistic”, giving

much more interest to current rewards.

The Q-learning method, and TD methods in

general do not specify what actions should the agent

take in each step. The agent can take any action, from

a list of possible actions. This means that the agent at

each step can chose an action that is either

exploratory or the best know until this point. The ε-

greedy method specifies this: the closer ε is to 0, the

agent will take the best action, whereas if ε → 1 the

agent will simply explore the state, meaning that it

will take a random possible action.

In our learning scenarios, the agent uses the

algorithm which is presented by the authors of [3].

This algorithm can be seen on fig 1.

At the beginning of the training the γ is set to

a high value thus forcing the agent to explore. After a

while we can lower this value and choose exploitation

instead.

One of the greatest advantages of the Q-

learning algorithm is its simplicity. Th major

drawback of the algorithm is the finite number of

states and actions – in the real world this is not

always possible. If the number of states, or actions

increases the Q-table gets big, resulting in a poor

performance. The problem can be solved by using

discrete the inputs.

Another disadvantage is the local maximum

problem – selecting the best rated action can take the

agent in a local maximum.

3. Proposed framework

A simulated world filters many noises that are

common in the real world. For example, in the real

world the ground might be slippery in some parts, a

robot's wheel might slip, thus causing false inputs.

Also, in the real world collisions can have bad

consequences, like partially destroying the robot. In

the simulator collisions are only theoretical.

Q-learning is a “simple” algorithm, defined by

a few key inputs and outputs. States are the way of

defining how the agent “interprets current state of the

environment”. In every given state the agent can

choose from a series of actions. These Actions are:

move (forward), rotate right, rotate left. After

executing the selected action, a reward is given. A

Reward representing the amount theoretical bonus for

reaching that state.

As seen on fig. 2, the agent, shown here in

green, searches for the target, here in red. The agent

has only local knowledge this information is gathered

from sensors. To simulate this we added a “visibility

circle” around the agent, shown here in yellow.

Fig. 2 – Simulation

Fig. 1: Q-learning Algorithm

30

Working with only local knowledge means that fewer

information needs to be processed.

Because we are not focusing on gathering and

processing sensor information, everything inside this

circle in considered known to the agent. We tried to

make this visibility as realistic as possible: the agent

can not see through objects. An object can be either

the target, an unmovable obstacle (dark gray), or a

wall (no color).

4. Environment without obstacles

At the first approach we put our agent in an

environment that had no obstacles. Catching a target

in an unknown environment, requires the following

steps: wander around until target is visible, rotate the

direction marker towards the target, move forward,

see fig. 2 for details.

Every state is composed of two descriptors:

distance and angle. The distance: the euclidean

distance between the targets and robots center in

sorted in a few distance categories: “category0”

means that the target is right near the agent.

The angle is always between [0, 360), no

negative values are allowed. In our case an angle of

just 1° is not significant. This means that we use

angle categories instead: “category0” points directly

in front of the robot and represents any angle from

[+5°, -5°]. Angle categories are visible on the fig. 3,

because having to much lines will make confusion,

they are not displayed. The authors of [2] and [6] also

use discrete inputs since they are also working with

continuous values.

5. Environment with obstacles

The current state descriptors do not provide a

way handle obstacles because they only contain

information about the target. Unfortunately, almost

every real environment has some sort of obstacles. In

our simulated world we added only stationary

obstacles, meaning that they do not change their

position in time.

Catching the target still requires the previously

mentioned steps, but when an obstacle blocks the path

to the target the agent needs to figure out how to

avoid a collision. A basic solution to an obstacle

would be to use a modified BUG1 algorithm where

the agent simply moves along the contour of obstacle

until it is no longer blocking the path to the target.

See [1] for details on Bug1.

To do this the agent needs to store the

obstacles relative position to its own. The agent is

equipped with bumper sensors that inform the

algorithm about the objects which lies directly in

front of the agent. These bumpers are not visible by

default, but the can be seen on fig. 4.

The state is described similarly as in the

previous case, but with three additional sensors.

These are: left, front, right bumper. A bumper holds

extra information: what lies there, and how far is it.

On fig. 3 the left bumper sees the target, the front

bumper has nothing, and the right bumper points to

the wall. The agent needs three bumpers because it

must know were the obstacle is located. If the “left

bumper” is showing that we are about to hit an

obstacle, we can enforce the agent to take the

appropriate action, in this case “rotate right”.

If the target is currently not visible the agent's

main task is to avoid obstacles. Otherwise follow the

target and avoid obstacles if necessary.

6. Experimental results

For testing we used the following algorithm:

1. Generate a new target

2. Start the agent → wandering process

3. Check if the target is reached - in other

words the target in front of the agent with

minimum distance between them.

4. If true go to 1.

5. Otherwise go to 2.

We repeat this process until the agent learns

the problem. We consider the learning process

successful when our agent upon seeing the target

starts moving directly towards it successfully

avoiding any obstacles.

We repeat this process for five times and

calculate the average learning runs. This will give us

information about how fast the learns in a given test

Fig. 3 – Angle categories

Fig. 4 – Bumper sensors

31

scenario. These scenarios are created based on the

rewarding method.

6.1 Agent, no obstacles

Choosing the wright reward set is a very

difficult process. First we experimented with

rewarding only when the target is reached. This

approach proved not to be a successful one: it needs a

large amount of trials to finally move towards the

target. The average here was 1648 runs.

Rather than giving a “big reward” for reaching

the target, we introduced a new concept: sub goals. If

the agent is “getting closer to the target” give a

positive reward, otherwise negative. This is calculated

based on the current angle and distance categories and

the previous angle and distance categories. If the

distance and the angle is getting smaller, then the

reward increases. We used a higher value for angle

because it is more important to turn towards the target

and then to start moving forward.

To further enhance the algorithm, we added

'Losing Target' reward which means that if the agent

loses the target it will get a big negative reward. This

produced almost the same result, but with half of time

need to learn the task. Also we experimented with

other sub goals like: “is the distance getting

smaller?”, giving a small but positive reinforcement

to the agent. Similarly, we applied this to the angle

input as well. In test case #3 the agent learns the

problem in approximately 300 successful learning

iterations.

Table 1: No obstacles - summary

Avg Rewarding

1 164

8

Reach the Target → +100

2 972 Added 'Losing Target' rewards:

current distance>older distance → -100

3 308 Added 'Sub Goals' rewards:

Angle: “from good to worse” → -3

Angle: “from bad, improvement” → +2

Distance: “from good to worse” → -2

Distance: “from bad, improvement” →

+1

6.2 Agent and obstacles

As described earlier this agent is equipped

with more sensors (bumpers) that serve as inputs for

the agent. The drawback of adding more state

descriptors is that the learning will take longer, but

the obvious advantage is that “the agent knows more

information about the environment”.

The same testing scheme presented earlier is

applied here to after all this agent is an upgraded

version of the previous one, meaning that the reward

rules still apply here as well. Only difference is that

once the bumpers sense that the agent is about to hit

some object (other than the target), they will force the

agent to turn away first. They also help to solve a

very interesting problem: the local maximum, shown

on fig. 5. The problem here is that if the agent

chooses the “left” action it will hit the obstacle.

Choosing the “right” action turns away from the

target.

Here, the algorithm is overriding the just for

brief moment the goal of reaching the target, with

avoiding collisions. In this case the reward is greater

than 100 (the reward normally given for reaching the

target). We also experimented with a smaller reward,

90, but in this case the results were worse then before.

This agent works the same as the previous one

in an environment containing no obstacles. However,

when these exist evasive action is taken. First we

experimented with “not forward” reward: meaning

that if an obstacle is blocking the path force a rotating

action. This setup does not hit any obstacle but it

might take the wrong angle (ex. on fig. 5 rotate left all

the way). The success rate is low, in many case the

agent fails to learn the problem.

Then we introduced the “good angle reward”.

If the right bumper is activated and the other is not,

the agent turns the other way. Same applies in the

other case.

This setup sometimes gets caught in an infinite

loop due to the learning process. Look at the situation

presented in fig. 5. The agent chooses the correct

action (rotate right), however after executing this

action, it immediately chooses the opposite action

(rotate left) which takes us back to the initial

problem.

To solve this in test case #3 check the previous

action as well. The rewarding is the same as in test

case #2 but the algorithm also checks the previous

action thus avoiding the infinite loop.

Table 2: With obstacles - summary

Avg. Rewarding

1 14821 Added “Not forward” → +10

2 5138 Added “Good angle” → +110

3 2387 Added “previous action check”

Fig. 5 – Local maximum

32

7. Conclusions

The Q-learning algorithm can be applied even

in a dynamic environment. Selecting the proper state

space can be difficult even at such a simple task. Also

the research shows how the rewards affect the

learning.

We store the data in a multidimensional table,

the Q table. The dimensionality of Q is given by

multiplying the state descriptors: #angle x

#dimensions... x #actions. In the current the Q table

there are unused areas. If the target is not visible, then

the angle and distance do variables do not count, they

are set to predefined number. Although not used

theoretically, it occupies space in the memory. One

way to fix this issue is to create a list of states, and

every time the agent finds a new undocumented state,

it simply adds it to the back of the list. We

experimented with this as well. Problem here is a new

state found only in the testing phase (does not have a

Q value). The agent can take a potentially bad move.

The main benefit of using discrete input values

is that less categories are manageable. This way we

only handle significant changes, that clearly have an

impact, but if we do not select a proper sampling, we

might be loosing on these details.

Another potential problem might be the usage

of ε-greedy algorithm. This approach allows the agent

to select between exploration and exploitation. In case

of exploitation, what happens if we have multiple best

actions? The answer is that always the first, or last

action will be selected. Using a soft-max algorithm

[3], this problem can be solved. The soft-max

algorithm distributes more equally among all actions

that give the same reward. The soft-max algorithm

provide a better distribution among equal Q valued

actions. The main problem here is that the agent

always chooses the first (or last depending on the

search implementation) best value, We did not

include this algorithm but in the near future we wish

to do so. For more details see [2].

8. Future

In the near future, we wish to further extend

this research, implementing a system in which many

agents compete against one another, or perhaps

working together to achieve a common goal.
Another idea is to change the state descriptors

completely. This new approach is illustrated on fig. 6.

The agent here is equipped with sensors that go all

around. Each sensor marks how desirable that point

is: red attracts, blue repels and white means that there

is nothing there.

This new method is called potential field

navigation. Currently this development is in testing

phase.

9. References

[1] Annamária R. Várkonyi-Kóczy: A Complexity

Reduced Hybrid Autonomous Navigation

Method for In-Door Robots, IPSI BgD Journal

2010

[2] Q-Learning Hexapod (May 2009), Matt R.

Bunting, Member, IEEE, and John Rogers

[3] Richard S. Sutton, Andrew G. Barto (1998),

Reinforcement Learning: An Introduction, The

MIT Press Cambridge, MA USA, ISBN:

0262193981

[4] Russell, Stuart J.; Norvig, Peter (2009), Artificial

Intelligence: A Modern Approach (3rd ed.),

Prentice Hall, ISBN: ISBN 0-13-604259-7

[5] PhD thesis "Learning from Delayed Rewards",

Cambridge, 1989 by Christopher John Cornish

Hellaby Watkins.

[6] Måns Ullerstam's Master’s thesis: Teaching

robots behavior patterns by using reinforcement

learning. How to raise pet robots with a remote

control, NADA, Kungliga Tekniska Högskolan,

within Computer Science and Engineering, 2004

[7] Yadira Qui˜nonez, Javier de Lope, and Dario

Maravall (2009) Cooperative and Competitive

Behaviors in a Multi-robot System for

Surveillance Tasks. Eurocast 2009, 12th

International Conference on Computer Aided

System Theory

[8] Luiz A. Celiberto Jr., Carlos H.C. Ribeiro, Anna

H.R. Costa , and Reinaldo A.C. Bianchi:

Heuristic Reinforcement Learning Applied to

RoboCup Simulation Agents, RoboCup journal

2007, Springer

Fig. 6 - Potential field

